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Abstract. We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known,
the oscillator then has a higher average energy than that given by its ground state. Here we show analyti-
cally that for a damping model with arbitrarily discrete distribution of bath modes and damping models
with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the
work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the
other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however,
physically unrealistic models.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 05.70.-a Thermodynamics

1 Introduction

Thermodynamics originally developed as a purely phe-
nomenological description of the effects caused by changes
in temperature, pressure, and volume on physical systems
at the macroscopic scale. At the heart of thermodynam-
ics there are four well-known laws [1]; the zeroth law al-
lows us to define temperature scales and thermometers
while the first law is nothing else than a generalized ex-
pression of the law of energy conservation. The second
law introduces the concept of thermodynamic entropy,
which never decreases for an isolated system. The third
law states that as a system approaches the zero tempera-
ture, the entropy of the system approaches zero. Later on,
Boltzmann and his followers created and developed sta-
tistical thermodynamics by reducing the phenomenolog-
ically described thermodynamics entirely to the scheme
of classical statistical mechanics. When quantum mechan-
ics appeared, the statistical thermodynamics had to take
into account additional factors offered by quantum me-
chanics, but the overall structure of thermodynamics, its
fundamental laws, and its meaning fit for macroscopic sys-
tems remained unchanged since quantum mechanics was
believed to play no roles at the macroscopic scale.

A big challenge for thermodynamics arose with the
miniaturization of a system under consideration [2]; in
contrast to common quantum statistical mechanics which
is intrinsically based on a vanishingly small coupling
between system and bath, the finite coupling strength
between them causes some subtleties that must be
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recognized. Recent advances in technology have enabled
us to experimentally study mesoscopic systems and test
various fundamental concepts. The field of nano electro-
mechanical systems (NEMS) especially has emerged with
a great potential, e.g., in quantum limit detection and am-
plification [3,4], and welcher-Weg (‘which-path’) interfer-
ometry [5]. Here, the effects of dissipative environments
that are negligible in macroscopic resonators become
detrimental, and the noise is, therefore, a major limit-
ing factor in control of NEMS resonators. Theoretically,
NEMS resonators can be modeled as the simplest form
in the scheme of quantum Brownian motion (see [6] for
fundamental aspects of quantum Brownian motion). Such
a development in various fields related to the quantum
statistical and mesoscopic physics has led to considerable
interest in the area of quantum and mesoscopic thermody-
namics, especially with the question raised on the validity
of the thermodynamic laws. Discussions about what is the
meaning of quantum thermodynamics [2,7] have started
and continued up to now.

The validity of the second law was questioned in the
scheme of quantum Brownian motion [2], motivated from
the observation of the fact that a single harmonic oscillator
coupled to a bath at zero temperature has indeed a higher
average energy value than the uncoupled harmonic oscil-
lator ground state (see also [8]), which could not be in ac-
cordance with the second law in its Kelvin-Planck form [1]
that a system operating in contact with a thermal reser-
voir cannot produce positive work in its surroundings (cf.
for a discussion on the validity of the quantum third law
in the low temperature limit, see, e.g., Refs. [9,10]). How-
ever, this argument has been shown to be wrong by Ford
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and O’Connell [11]; by means of the generalized Langevin
equation they showed, for the well-known Drude model
for the spectral density of bath modes, that the appar-
ent excess energy in the coupled harmonic oscillator, how-
ever, cannot be used to extract useful work since the min-
imum value of the work to couple the free oscillator to
a bath takes above and beyond this excess energy, there-
fore, the second law of thermodynamics is inviolate even
in the quantum regime (i.e., for cases with non-negligible
coupling strengths at temperature T = 0 without thermal
fluctuation). Unfortunately they were unable to explic-
itly connect their result with its model-independent, deep
quantum origin, thus the validity of the quantum second
law for a more general form of the spectral density of bath
modes, J(ω) would still remain an open question; actu-
ally, in the experimental study of mesoscopic systems one
might be able to manipulate the spectral density J(ω),
to some extent, in his own way. In this paper, we would
like to discuss the second law for various damping mod-
els. We will first show the validity of the second law for a
discrete distribution of bath modes by exactly proving the
second-law inequality in a simple form obtained from the
general treatment of the susceptibility (see Sect. 3). Sub-
sequently, the inequality will be appropriately applied for
various continuous distributions of bath modes. It is then
found that for damping models with cut-off frequencies,
the second law holds, whereas interestingly, we may have
its violation for damping models with cut-off frequency-
free J(ω), which are, however, physically unrealistic (see
Sect. 4). Let us begin with a brief review on the basics of
the quantum Brownian motion. We will below adopt the
notations used in [12].

2 Basics and its general treatment

The quantum Brownian motion in consideration is de-
scribed by the model Hamiltonian

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where

Ĥs =
p̂2

2M
+

M

2
ω2

0 q̂2 ; Ĥb =
N∑

j=1

(
p̂2

j

2mj
+

mj

2
ω2

j x̂2
j

)

Ĥsb = −q̂

N∑

j=1

cj x̂j + q̂2
N∑

j=1

c2
j

2mj ω2
j

. (2)

Here, from the hermiticity of Hamiltonian, the coupling
constants cj are obviously real-valued. Without any loss
of generality, we assume that

ω1 ≤ ω2 ≤ · · · ≤ ωN−1 ≤ ωN . (3)

By means of the Heisenberg equation of motion for p̂ we
can derive the quantum Langevin equation

M ¨̂q + M
∫ t

0
ds γ(t − s) ˙̂q(s) + Mω2

0 q̂ = ξ̂(t), (4)

where we used p̂ = M ˙̂q, and the damping kernel and the
noise operator are respectively given by

γ(t) =
1
M

N∑

j=1

c2
j

mj ω2
j

cos(ωj t); ξ̂(t) = −Mγ(t)q̂(0)

+
N∑

j=1

cj

{
x̂j(0) cos(ωj t) +

p̂j(0)
mj ωj

sin(ωj t)
}

.(5)

Introducing the spectral density of bath modes as a char-
acteristic of the bath,

J(ω) = π
N∑

j=1

c2
j

2mjωj
δ(ω − ωj), (6)

we can express the damping kernel as

γ(t) =
2
M

∫ ∞

0

dω

π

J(ω)
ω

cos(ω t). (7)

Let us apply the Laplace transform to equation (4) with
the aid of [13,14]

L{cos(ωj t)}(s) =
s

s2 + ω2
j

, (8)

L{sin(ωj t)}(s) =
ωj

s2 + ω2
j

. (9)

With s = −iω + 0+ = −i(ω + i 0+) we then easily obtain

q̂ω := L{q̂(t)}(−iω + 0+)

= χ̃(ω)
[
ξ̂ω − iωM{1 + γ̃(ω)} q̂(0) + M ˙̂q(0)

]
, (10)

where the Laplace-transformed damping kernel, the dy-
namic susceptibility, and the Laplace-transformed noise
operator are, respectively, given by

γ̃(ω) =
iω

M

N∑

j

c2
j

mj ω2
j

1
ω2 − ω2

j

, (11)

χ̃(ω) =
1
M

1
ω2

0 − ω2 − iω γ̃(ω)
, (12)

ξ̂ω =
N∑

j=1

cj

ω2 − ω2
j

{
iω x̂j(0) − p̂j(0)

mj

}
− Mγ̃(ω) q̂(0).

Substituting (11) into (12), we get

χ̃(ω) =

− 1
M

N∏

j=1

(ω2 − ω2
j )

Dχ̃(ω)
, (13)

where

Dχ̃(ω) =
N∏

j=0

(
ω2 − ω2

j

)− ω2

M

N∑

j=1

c2
j

mj ω2
j

N∏

j′=1
(�=j)

(
ω2 − ω2

j′
)
.

(14)
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It is known [15] that the susceptibility χ̃(ω) in (12) has
poles at the normal-mode frequencies of the total system
Ĥ in (1), ± ω̄k with k = 0, 1, 2, ..., N , so that

ω2
0 − ω̄2

k − iω̄kγ̃(ω̄k) = 0. (15)

Here, we might be able to say that a specific k = k0

would represent the “system harmonic oscillator” with the
normal-mode frequency ω̄k0 , uncoupled to the “bath” con-
sisting of the remaining oscillators with ω̄k, where k �= k0.
From equations (12), (13), and (15), we have a compact
expression of the susceptibility,

χ̃(ω) = − 1
M

N∏

j=1

(ω2 − ω2
j )

N∏

k=0

(ω2 − ω̄2
k)

· (16)

Without any loss of generality, we here assume that

ω̄0 ≤ ω̄1 ≤ · · · ≤ ω̄N−1 ≤ ω̄N . (17)

The damping function γ̃(ω) in the frequency domain has,
besides equation (11), another expression which is suitable
for the case of a continuous distribution of bath modes;
from equations (7) and (8) we obtain

γ̃(ω) =
i

M

∫ ∞

0

dω′

π

J(ω′)
ω′

(
1

ω′ + ω
− 1

ω′ − ω

)
,

(18)

γ̃(ω)
∣∣

ω→
ω+i 0+

=
J(ω)
Mω

+
i

M

∫ ∞

0

dω′

π

J(ω′)
ω′ P

(
1

ω′ + ω
− 1

ω′ − ω

)
.

(19)

We here used the well-known formula 1/(x + i 0+) =
P (1/x) − iπδ(x) for x = ω′ − ω. For the simple Ohmic
case J0(ω) = Mγo ω with an ω-independent constant γo,
we easily have γ0(t) = 2γo δ(t), and γ̃0(ω) = γo with a
vanishing principal (or imaginary) part in (19), while for
the Drude model where Jd(ω) = Mγoωω2

d/(ω2 + ω2
d) with

a cut-off frequency ωd, we have γd(t) = γoωde
−ωdt, and

γ̃d(ω) =
γoω

2
d

ω2 + ω2
d

+ i
γoωdω

ω2 + ω2
d

=
γoωd

ωd − iω
· (20)

For a later purpose, it is interesting to compare Dχ̃(ω) in
equation (14) with the denominator of the right hand side
in (16). Then, we can easily find that

N∑

k=0

ω̄2
k =

N∑

j=0

ω2
j + γ(0);

N∏

k=0

ω̄2
k =

N∏

j=0

ω2
j . (21)

Here, γ(0) = γ(t)|t=0 ≥ 0 in equation (5). From this
comparison of the denominators at ω = ωN , we also ob-
tain Dχ̃(ωN ) ≤ 0 and so ωN ≤ ω̄N . Similarly, we can

acquire both Dχ̃(ω1) ≤ 0 for N odd and Dχ̃(ω1) ≥ 0
for N even, which lead to the fact that ω̄0 ≤ ω1 for
any given N . Further, we can obtain the relationship,
Dχ̃(ωj) · Dχ̃(ωj−1) ≤ 0 for any j. Therefore, it is found
that

ω̄0 ≤ ω1 ≤ ω̄1 ≤ · · · ≤ ωN−1 ≤ ω̄N−1 ≤ ωN ≤ ω̄N .
(22)

By using Dχ̃(ω0), we can also show that ω̄0 ≤ ω0 ≤ ω̄N

(see also [16]). Within this general treatment of the sus-
ceptibility, we would like to consider the quantum second
law below.

3 General validity of the quantum second law
(discrete bath modes)

The energy of the system oscillator Ĥs at zero temperature
can be calculated by means of the partition function Z =
Tr e−βĤ with β = 1/kBT as

〈
Ĥs

〉

T=0
=

Tr
(
Ĥse

−βĤ
)

Z

∣∣∣∣∣∣
β→∞

=: Es(0). (23)

It is well-known [7,17] that the system-bath entangle-
ment induced by the coupling term Ĥsb in (1) leads to
the fact that the system oscillator Ĥs, initially in a pure
state (here, its ground state with the minimum energy
Eg = � ω0/2), is not in the pure state any longer but
in a mixed state with a fluctuation in energy, and so we
actually have Es(0) > Eg. It was even discussed in [18]
that the energy fluctuation measurements can provide en-
tanglement information (cf. for a thermodynamical ap-
proach to quantifying entanglement in bipartite qubit
states, see [19]). From the fluctuation-dissipation theo-
rem [12], we can also easily obtain

Es(0) =
M�

2π

∫ ∞

0

dω
(
ω2

0 + ω2
)
Imχ̃

(
ω + i 0+

)
. (24)

The factor Im χ̃(ω + i 0+) can be evaluated from equa-
tion (16) with ω → ω + i 0+. By means of the technique
used, e.g., in [20], equation (24) can be rewritten as

Es(0) =
�

2
1

2πi

∮
dω

ω2
0 + ω2

G(ω)
, (25)

where G(ω) = −1/{M χ̃(ω)}, and the integration path
is a loop around the positive real axis in the complex ω-
plane, consisting of the two branches, (∞ + iε, iε) and
(−iε, ∞ − iε). Therefore, Es(0) can be exactly obtained
in closed form from the residues evaluated at all ze-
roes of G(ω) on the positive real axis. It is also inter-
esting to note that the entanglement between any pair
of the bath oscillators Ĥj = p̂2

j/2 mj + mj ω2
j x̂2

j/2 with
j = 1, 2, 3, ..., N is induced by the system-bath entangle-
ment and the well-known entanglement swapping [21]. As
a result, we must obtain an excess energy for any j, i.e.,
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〈Ĥj〉T=0 > � ωj/2. However, the energy of the total sys-
tem, 〈Ĥ〉T=0 =

∑N
k=0 �ω̄k/2 is clearly not equivalent to

〈Ĥs〉T=0 +
∑N

j=1〈Ĥj〉T=0 = 〈Ĥs + Ĥb〉T=0.
The minimum work required to couple a harmonic os-

cillator at temperature T to a bath at the same temper-
ature is equivalent to the Helmholtz free energy of the
coupled total system minus the free energy of the un-
coupled bath [1,11]. The Helmholtz free energy can be
obtained from the canonical partition function Zs(β) =
Tr e−βĤ/Trb e−βĤb as F (T ) = −kB T ln Zs, where Trb de-
notes the partial trace for the bath alone (in the absence
of a coupling between system and bath, this would exactly
correspond to the partition function of the system only).
By means of the normal-mode frequencies ω̄k the partition
function can be rewritten as

Zs(β) =

∏

k=0

∑

nk=0

e−β�ω̄k(nk+ 1
2 )

∏

j=1

∑

nj=0

e−β�ωj(nj+
1
2 )

(26)

so that we can easily get, for β → ∞,

F (0) =
�

2

⎛

⎝
N∑

k=0

ω̄k −
N∑

j=1

ωj

⎞

⎠. (27)

With the aid of equation (21), it is evidently found that
F (0) > � ωj/2 for any j = 0, 1, 2, ..., N . Further, we have,
from [22],

F (T ) =
1
π

∫ ∞

0

dωf(ω, T ) Im
{

d

dω
ln χ(ω + i0+)

}
, (28)

where f(ω, T ) = kB T ln{2 sinh(� ω/2 kBT )}. Similarly to
equation (25), we can obtain an integral form of the free
energy at T = 0,

F (0) =
�

2
1

2πi

∮
dω

ωG′(ω)
G(ω)

. (29)

Here, f(ω, 0) = � ω/2.
Now, we are in a position to exactly formulate the

quantum second law within this general treatment; from
equations (25) and (29) with (12), we easily find an ex-
pression

K := F (0) − Es(0) =
�

4π

∮
dω

ω2γ̃′(ω)
G(ω)

, (30)

and, for the validity of the second law, we have to get
K ≥ 0 for any N (the number of the bath oscillators) and
the limit N → ∞. Here, K can exactly be evaluated from
all residues of the integrand on the positive real axis. Sub-
stituting (16) with χ̃(ω) = −1/MG(ω) and (11) into (30),
we obtain, after a fairly lengthy evaluation of the contour
integration (see Appendix A for details), the exact result

K =
�

8M

N∑

k=0

Ak, (31)

where

Ak = ω̄k

N∏

j=1

(ω̄2
k − ω2

j )

N∏

k′=0
(�=k)

(ω̄2
k − ω̄2

k′)

(32)

×
N∑

l=1

c2
l

ml ω2
l

P

{
1

(ωl + ω̄k)2
+

1
(ωl − ω̄k)2

}
.

Considering each summand Ak from k = N with keeping
in mind the frequency relationship in (22), we see that
each of the summand is non-negative and so K ≥ 0 indeed!
Separately from this result for discrete bath modes, we will
next discuss the second law for continuous bath modes.
For doing this job, we will consider a continuation of the
spectral density J(ω) from its original form in (6).

4 The second law for continuous bath modes

For a discussion of the second law for a continuous distri-
bution of bath modes, we rewrite equation (30) as

K =
�

4π

(∫ ∞

0

dω
ω2γ̃′

−(ω)
G−(ω)

−
∫ ∞

0

dω
ω2γ̃′

+(ω)
G+(ω)

)
, (33)

where the subscripts +/− denote the branches (∞+iε, iε)
and (−iε, ∞− iε), respectively, so that

G+(ω) := G(ω)
∣∣ ω→

ω+i 0+
= ω2 − ω2

0 + i
J(ω)
M

− ω

M

∫ ∞

0

dω′

π

J(ω′)
ω′ P

(
1

ω′ + ω
− 1

ω′ − ω

)
, (34)

and G−(ω) := G(ω)
∣∣

ω→
ω−i 0+

= G∗
+(ω). Here, we used

G(ω) = ω2 − ω2
0 + i ω γ̃(ω) with equation (19) for γ̃+(ω).

Therefore, equation (33) easily reduces to

K =
�

2π
Im
∫ ∞

0

dω
ω2R′

+(ω)
G+(ω)

, (35)

where R+(ω) = −i γ̃+(ω).
First, for the Ohmic case, (γ̃+)0(ω) = γo, which is the

prototype for damping, we easily obtain K0 = 0. In fact,
both (Es)0(0) and F0(0) have the logarithmic divergence,
however, the same value, namely,

(Es)0(0) = F0(0) = � γo

2 π

∫∞
0

dω
ω (ω2+ω2

0)

(ω2−ω2
0)2+ (γo ω)2

(36)

(see also the discussion in the last paragraphs of Sects. 4.1
and 4.2). However, the Ohmic model is not so realistic in
its strict form because the spectral density of bath modes,
J0(ω) = Mγo ω diverges for large frequencies. We there-
fore introduce a cut-off frequency ωc which leads to Jc(ω)
decaying smoothly to zero for large frequencies ω > ωc.
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We will first consider the Drude model, where Jd(ω) is
polynomially decaying for ω > ωc = ωd, and next a damp-
ing model with Je(ω) being exponentially decaying for
ω > ωc = ωe. For these damping models, we will be able
to show that K > 0. Subsequently, we will also consider
two different damping models without cut-off frequencies
ωc; first, the extended Ohmic models where the spectral
densities J(ω) diverge polynomially faster than J0(ω), and
secondly, the extended Drude models with Jd,n(ω) diverg-
ing faster or more slowly than J0(ω). Interestingly, we will
observe K < 0 for some of the cut-off frequency-free damp-
ing models (see Sects. 4.3 and 4.4).

4.1 Drude model (d)

We briefly review the second law in the Drude model
considered in [11]; it is convenient to adopt, in place of
(ω0, ωd, γo), the parameters (w0, Ω, γ) through the rela-
tions

ω2
0 : = w2

0

Ω

Ω + γ
; ωd := Ω + γ;

γo : = γ
Ω(Ω + γ) + w2

0

(Ω + γ)2
. (37)

Substituting equation (20) with (37) into equation (12),
we obtain the susceptibility

χ̃d(ω) =

− 1
M

ω + iωd

ω3 + iωdω2 − (ω2
0 + γoωd)ω − iω2

0ωd
(38)

= − 1
M

ω + i(Ω + z1 + z2)
(ω + iΩ)(ω + iz1)(ω + iz2)

, (39)

where z1 = γ/2 + iw1 and z2 = γ/2 − iw1 with w2
1 =

w2
0− (γ/2)2. This gives us (G+)d(ω) = −1/{M χ̃d(ω)} for

equation (35). By means of equation (39), we can even
obtain the closed expressions for both (Es)d(0) from (24)
and Fd(0) from (28). We give the detailed derivation of
these expressions in Appendix B, which will also be used
in Section 4.4. It has been numerically shown in [11] that

(Es)d(0) in (65) is actually greater than Eg = � w0
2

√
Ω

Ω + γ ,
and Fd(0) in (68) is even greater than the (Es)d(0), i.e.,
Kd > 0. For a later purpose, we will also evaluate Kd ex-
plicitly for various pairs (ω0, ωd) (see Tab. 2 in Sect. 4.4).

It is noted that in the limit ωd → ∞ (equivalently,
Ω → ∞), we have Kd → γ

πw0
Eg (see Appendix B).

From the comparison between γ̃d(ω) and γ̃0(ω) (or, equiv-
alently, Jd(ω) and J0(ω)), this result would be interpreted
as K0 → γ

πw0
Eg. However, it is misleading; γ̃d(ω) behaves

only for small frequencies, ω � ωd, like in the Ohmic case,
which corresponds to γd(t) → γ0(t) only for large times.
Actually, γd(t) = γo ωd e−ωd t with ωd → ∞ does not re-
duce to γ0(t) = 2 γo δ(t) = limωd→∞ 2√

π
γo

√
ωd e−ωd t2 .

For the evaluation of K, however, all frequencies, 0 ≤
ω < ∞, have to be considered. Therefore, we evidently
get limωd→∞ Kd � K0 = 0 .

Table 1. Ke/Eg for various pairs (γo, ωe), where Eg = �

2
(i.e.,

ω0 = 1); limωe→∞ Ke/Eg = γo/π.

ωe γo = 0.5 γo = 1 γo = 2 γo = 5

0.5 0.04225 0.08186 0.15604 0.34038

1 0.06130 0.11838 0.22117 0.47348

5 0.10600 0.20348 0.37899 0.81614

10 0.12131 0.23326 0.43819 0.96224

50 0.14414 0.28018 0.54302 1.25567

80 0.14789 0.28896 0.56377 1.32020

∞ 0.15915 0.31831 0.63662 1.59155

4.2 Exponentially decaying model (e)

We now consider a damping model with Je(ω) =
M γo ω e−ω/ωe which, in the limit ωe → ∞, clearly re-
duces to J0(ω) for small frequencies. Substituting this into
equation (7), we can obtain

γe(t) =
2
π

γoωe

1 + (ωe t)2
. (40)

Applying the Laplace transform [14] to equation (40) with
s = −i ω + 0+, it can be found that

γ̃e(ω) = γoe
−ω/ωe

+ i
γo

π

{
eω/ωeE1

(
ω

ωe

)
+ e−ω/ωeEi

(
ω

ωe

)}
, (41)

(see Appendix C for the detailed derivation). By using
this with E′

1(y) = −E0(y) = −e−y/y, we can easily get
(R′

+)e(ω) and (G+)e(ω), and then introducing a dimen-
sionless variable λ = ω/ωe, we arrive at the expression

Ke =
�γoω

2
e

2π2
Im
∫ ∞

0

dλ
f1(λ)
f2(λ)

, (42)

where

f1(λ) = λ2
{
eλ E1(λ) − e−λEi(λ) + iπe−λ

}
, (43)

f2(λ) = ω2
eλ2 − ω2

0 − γoωe

π
λ
{
eλE1(λ) + e−λEi(λ)

}

+ iωeγoλe−λ. (44)

We numerically evaluate the integration in (42) for various
pairs (γo, ωe) to show that Ke > 0 (see Tab. 1).

From the fact that γ̃e(ω) behaves like in the Ohmic
case for small frequencies ω � ωe, it is also interesting
to consider the leading behavior of Ke for ωe → ∞; from
equation (42) we can easily get limωe→∞ Ke = � γo

2 π �= 0,
which is also different from limωd→∞ Kd in Section 4.1.
This confirms that these limiting values cannot reveal the
Ohmic counterpart K0.

4.3 Extended Ohmic models (p)

Let us consider damping models with Jp(ω) =
M γo ω (ω/γo)p being polynomially divergent with ω.
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Clearly, the case of p = 0 is Ohmic. First, we have
J1(ω) = M ω2. By using the relationship

∫∞
0 dy eiky =

π δ(k) + i P (1/k), we can easily obtain γ1(t) = − 2
π P 1

t2 ,
which leads to no well-defined γ̃1(ω). This (p = 1) is,
therefore, physically not acceptable. It is not difficult to
show that the cases of p being odd are not acceptable.

Next, we consider the case of p = 2. It can be shown
that γ2(t) = − 2

γo
δ′′(t) and (γ̃+)2(ω) = ω2

γo
− i 2 δ(0)

γo
ω. By

using this for equation (35), we can obtain

K2 =
�

2 π
Im
∫ ∞

0

dω
2 ω2 {−ω + i δ(0)}
ω3 − i α ω2 + i β

, (45)

where α = γo + 2 δ(0) and β = ω2
0 γo. The integral

in (45) diverges logarithmically. This divergence is, ob-
viously, from the fact that both (Es)2(0) and F2(0) di-
verge logarithmically, however, differently from the Ohmic
case, (Es)2(0) �= F2(0). In fact, we find that K2 =
− �

π {δ(0)+γo}×∞ < 0, which clearly means that the ex-
cess energy, (Es)2(0), is greater than the minimum work
(or the work in a reversible process), F2(0), required to
couple a system to a bath. This violation of the second
law in the reversible process may be understood to emerge
from a large amount of the energy offer by the bath with
J2(ω) diverging with ω. The infinite value of K2 suggests,
however, that this model would be strictly unrealistic.

4.4 Extended Drude models (d, n)

We now consider a more general class of the spectral den-
sity than Jd(ω), which is

Jd,n(ω) =
(

ω

ωd

)n

Jd(ω) = Mγo
ωn+1

ωn−2
d (ω2 + ω2

d)
. (46)

Let us begin with n being odd. First, n = 1. We then
have Jd,1(ω) = Mγo ωd ω2/(ω2 + ω2

d), which converges to
a non-zero constant Mγo ωd for large frequencies. Substi-
tuting this into equation (7), we can obtain, after some
calculation (see Appendix C for details),

γd,1(t) =
γo ωd

π
[{Ei(ωdt) + E1(ωdt)} sinh(ωdt)

−{Ei(ωdt) − E1(ωdt)} cosh(ωdt)] . (47)

Applying the Laplace transform [14] to this, we can get

(γ̃+)d,1(ω) =
γo ωd ω

ω2 + ω2
d

+ i
2
π

γo ωd ω

ω2 + ω2
d

ln
(

ω

ωd

)
. (48)

Using equation (34) with (48), we can arrive at the ex-
pression in (35)

Kd,1 =
�γo

2 π
Im
∫ ∞

0

dλ
g1(λ)
g2(λ)

, (49)

Table 2. Kdπ/γoEg from (71) versus Kd,1π/γoEg from (49)
for various pairs (ω0, ωd) with γo = 1, where Eg = � ω0

2
; (d, 0)

denotes the Drude model.

(ω0, ωd) (d, 0) (d, 1) (ω0, ωd) (d, 0) (d, 1)

(0.5, 0.5) 0.84275 0.50184 (1, 0.5) 1.21124 0.25468

(0.5, 1) 0.61942 0.45203 (1, 1) 0.45318 0.26521

(0.5, 5) 1.29483 0.34454 (1, 5) 0.61427 0.17800

(0.5, 10) 1.52266 0.24507 (1, 10) 0.73767 0.05454

(5, 0.5) 0.53089 0.02832 (10, 0.5) 0.28968 0.00936

(5, 1) 0.47010 0.04106 (10, 1) 0.27637 0.01345

(5, 5) 0.09790 0.05476 (10, 5) 0.13428 0.02346

(5, 10) 0.09537 0.04976 (10, 10) 0.04792 0.02347

where

g1(λ) = λ2
[

2 λd

π {(λ2
d − λ2) ln

(
λ
λd

)
+ λ2 + λ2

d}
+ iλd(λ2 − λ2

d)
]
,

g2(λ) = (λ2 + λ2
d)
{
(λ2 − λ2

0) (λ2 + λ2
d)

−2 λdλ
2

π
ln
(

λ

λd

)
+ iλdλ

2

}
. (50)

Here, we introduced a dimensionless variable λ = ω/γo

with λ0 = ω0/γo and λd = ωd/γo. We numerically evalu-
ate Kd,1 for various pairs (λ0, λd) to show that Kd,1 > 0
(see Tab. 2). It is also noted that in the limit λd (or ωd)
→ ∞, the spectral density Jd,1(ω) with γo = ωd reduces
to J1(ω) in Section 4.3 for small frequencies. As was dis-
cussed, however, this case (d, 1) is a well-defined damping
model whereas the model with J1(ω) is not.

Let n = 3 next. We have J(ω)d,3 = Mγo ω−1
d ω4/(ω2 +

ω2
d). After a straightforward calculation, we will obtain

γd,3(t) = −γd,1(t) − 2 γo

π ωd

P

t2
, (51)

which indicates that this case is physically not acceptable.
Similarly, we can also show that all cases for n > 3 being
odd are not acceptable.

Now, let n be even. We can then find that

γd,2m(t) = (−1)m

⎧
⎨

⎩γd(t) −
m∑

j=1

γ
{2(j−1)}
0 (t)

ω
2(j−1)
d

⎫
⎬

⎭ , (52)

where m = 1, 2, ..., and γ
{2(j−1)}
0 (t) represent 2(j−1)-time

derivatives of γ0(t). We begin with a simple case (m = 1)
with Jd,2(ω) = Mγo ω3/(ω2 + ω2

d). This case is partic-
ularly interesting because Jd,2(ω) diverges for large fre-
quencies, however, more slowly than J0(ω) for the Ohmic
case, whereas all Jd,2m(ω) for m > 1 diverge faster than
J0(ω); Jd,2(ω) may be said to be of weak divergence. Due
to the fact that Kd,0 > Kd,1 > 0 seen from Table 2,
we would like to pose a question if we will here obtain
Kd,1 > Kd,2 > 0 = K0 or Kd,1 > 0 ≥ Kd,2. In fact, we
have an interesting relation (γ̃+)d,2(ω) = −γ̃d(ω) + γ̃0(ω)
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Fig. 1. Kd,2/Eg versus x = γ/w0, where the ground state

energy Eg = �

2

√
Ω γ + w2

0; for Ω = 2w0 (dot), 5w0 (solid),
10w0 (dashed) from top to bottom.

from equation (52), and so (R′
+)d,2(ω) = −(R′

+)d(ω) for
equation (35). Introducing the parameters (w0, Ω, γ) de-
fined as the relations

ωdω
2
0 := Ωw2

0; ωd + γo := Ω + γ; ω2
0 := Ωγ + w2

0 (53)

(note that these differ from the relations in (37)), we can
easily obtain

(G̃+)d,2(ω) =
ω3 + i (γo + ωd)ω2 − ω2

0 ω − i ω2
0 ωd

ω + i ωd

=
(ω + iΩ) (ω + iz1) (ω + iz2)

ω + iΩ w2
0/(Ω γ + w2

0)
, (54)

where z1 = γ
2 + iw1 and z2 = γ

2 − iw1 with w2
1 = w2

0 −
(γ

2 )2. By using equations (35) and (54), we arrive at the
expression

Kd,2 =
�

2 π

Ω w2
0

(Ω γ + w2
0) (Ω γ − Ω2 − w2

0)
C(w0, Ω, γ)

(55)
where

C(w0, Ω, γ) = γ(w2
0 − Ω2)

1
w1

arctan
2w1

γ

+
(
Ω2 + w2

0 − Ω γ
)
ln
(
Ω γ + w2

0

)

− 2(Ω2 + w2
0) lnw0 + 2Ω γ ln Ω. (56)

In case that w1 is complex-valued (w0 < γ/2), i.e., for
the overdamped case, this has to be understood in terms
of the relation, 1

w1
arctan 2 w1

γ = 1
2 w̄1

ln
(

γ+2 w̄1
γ−2 w̄1

)
, where

w̄2
1 = (γ

2 )2 − w2
0.

Interestingly enough, we can here observe Kd,2 < 0
(see Fig. 1), which would allow us to have a violation of
the second law in the reversible process for this damp-
ing model. This negativity may be understood from the
comparison, with the aid of the relation (R′

+)d,2(ω) =
−(R′

+)d(ω), between

Kd,2 =
�

2 π
ωdγo Im

∫ ∞

0

dω

× ω2

(ω + iωd)(ω + iΩ)(ω + iz1)(ω + iz2)
(57)

with (w0, Ω, γ) in equation (37) and ωd = Ω + γ, and

Kd = − �

2 π
ωdγo Im

∫ ∞

0

dω

× ω2

(ω + iωd) (ω + iΩ) (ω + iz1)(ω + iz2)
> 0 (58)

with (w0, Ω, γ) in (53) and ωd = w2
0 Ω/(Ω γ + w2

0). In
fact, we can also show, by using equation (28) with (54),
that Fd,2(0) > Fd(0).

Next, we briefly consider the case of (d, 4). We then
have (γ̃+)d,4(ω) = γ̃d(ω) − γo + (γo ω2 − 2 iγo δ(0)ω)/ω2

d
from equation (52). After a fairly lengthy calculation with
this, we can eventually obtain an explicit expression for
Kd,4 = �

2 π

∫∞
0

dω fd,4(ω), where fd,4(ω) → −2 {δ(0) +
ω2

d/γo}/ω for large ω. From this asymptotic form, we eas-
ily see that Kd,4 → −∞, which indicates the violation of
the second law. This infinity of Kd,4 suggests, however,
that this case would be strictly unrealistic.

From the above results for cases (d, n) including the
case (p = 2) in Section 4.3, we may be able to say
that aside for physically unacceptable damping models,
the divergence (weak or strict) of the spectral density
J(ω) for large frequencies could lead to the violation of
the second law. It is also interesting here to note that
Re (γ̃+)d,2(ω) = γo ω2/(ω2 + ω2

d) > 0 and Re (γ̃+)d,4(ω) =
γo ω−2

d ω4/(ω2 + ω2
d) > 0. It is known [23] that a violation

of the positivity for Re γ̃+(ω) is tantamount to a viola-
tion of the second law in the thermodynamic limit (where
a coupling strength between system and bath vanishes).
We see here, however, that this positivity would not be
a sufficient condition for the second law in the quantum
regime (with a non-negligible finite coupling strength be-
tween system and bath).

5 Conclusions

In summary, we have extensively studied the second law
in the scheme of quantum Brownian motion. It has been
observed that from the system-bath entanglement, a sys-
tem oscillator coupled to a bath at zero temperature has
a higher average energy value than the ground state of
an uncoupled harmonic oscillator. For a damping model
with arbitrarily discrete bath modes and damping models
with continuous bath modes with cut-off frequencies, how-
ever, this apparent excess energy has actually been found
to be less than the minimum work to couple a system
to a bath. Therefore, the second law holds in the quan-
tum regime. We also found, on the other hand, that the
violation of the second law may happen for some cut-off
frequency-free damping models, which are, however, phys-
ically unrealistic; especially the case (d, 2) in Section 4.4,
with a less diverging spectral density of bath modes than
the Ohmic model being the prototype for damping, has a
finitely negative value of Kd,2. The further question about
the validity of the quantum second law for a broader class
of quantum systems than the quantum Brownian motion
considered here, particularly non-linear systems coupled
to a bath, clearly remains open.
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∫ ∞

0

dω Imχd(ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

M

(w2
0 + Ω2 − γ2/2) arccos(γ/2w0) − γ w1 ln(Ω/w0)

w1 (w2
0 − Ω γ + Ω2)

for w0 > γ/2

1

M

(γ2/2 − w2
0 − Ω2)/2 · ln

(
γ/2 − w̄1
γ/2 + w̄1

)
− γ w̄1 ln(Ω/w0)

w̄1 (w2
0 − Ω γ + Ω2)

for w0 ≤ γ/2

(63)

∫ ∞

0

dω ω2 Imχd(ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

M

(w4
0 + w2

0 Ω2 − Ω2 γ2/2) arccos(γ/2w0) + Ω2 γ w1 ln(Ω/w0)

w1 (w2
0 − Ω γ + Ω2)

for w0 > γ/2

1

M

(Ω2 γ2 − 2w4
0 − 2w2

0 Ω2)/4 · ln
(

γ/2− w̄1
γ/2 + w̄1

)
+ Ω2 γ w̄1 ln(Ω/w0)

w̄1 (w2
0 − Ω γ + Ω2)

for w0 ≤ γ/2

(64)

One of us (I.K.) is grateful to G.J. Iafrate for some interesting
remarks.

Appendix A: detailed derivation
of equation (31)

By substituting equation (16) with χ̃(ω) = −1/MG(ω)
and equation (11) into K in (30), we immediately have

K =
−i�

4πM

∮
dωω2

N∏

j=1

(
ω2 − ω2

j

)

N∏

k=0

(
ω2 − ω̄2

k

)

×
N∑

l=1

c2
l

2 ml ω2
l

{
1

(ωl + ω)2
+

1
(ωl − ω)2

}
, (59)

where the integration path over ω is a loop around the
positive real axis in the complex ω-plane, consisting of the
two branches, (∞ + iε, iε) and (−iε, ∞ − iε). By using
the residues at all poles ω = ω̄k of the integrand, we can
evaluate the contour integration. In doing so, we do not
have any residue at ω = ω̄k′ when ωl = ω̄k′ . Accordingly,
we can finally obtain

K =
�

4M

N∑

k=0

Ak ; Ak = A(1)
k · A(2)

k , (60)

where

A(1)
k = ω̄k

N∏

j=1

(
ω̄2

k − ω2
j

)

N∏

k′=0
(�=k)

(
ω̄2

k − ω̄2
k′
)
;

A(2)
k =

N∑

l=1

c2
l

2 ml ω2
l

P

{
1

(ωl + ω̄k)2
+

1
(ωl − ω̄k)2

}
.

(61)

Here, A(2)
k is, obviously, positive-valued. Therefore, the

non-negativeness of Ak can be completely determined by
the factor A(1)

k . Keeping in mind the frequency relation-
ship in (22), we first consider A(1)

N . This is clearly non-
negative. Next, for k = N − 1, we have

A(1)
N−1 = ω̄N−1

N−1∏

j=1

(
ω̄2

N−1 − ω2
j

)

N−2∏

k=0

(
ω̄2

N−1 − ω̄2
k

)
× ω̄2

N−1 − ω2
N

ω̄2
N−1 − ω̄2

N

. (62)

The first factor on the right hand side is non-negative,
and so is the second factor whose numerator and denomi-
nator are negative-valued, respectively. Therefore, we get
AN−1 ≥ 0. Along the same line, we can straightforwardly
show that each summand Ak with k = N − 2, N − 3, ..., 0
is non-negative, which will yield K ≥ 0.

Appendix B: No violation of the second law
in the Drude model

In the Drude model, we can even evaluate the system en-
ergy (Es)d(0) and the free energy Fd(0) explicitly and in
closed form. From equation (39) we see that for w0 >
γ/2 (underdamped case), z1 and z2 are conjugate com-
plex numbers to each other, while for w0 ≤ γ/2 (over-
damped case), both z1 and z2 are real-valued. Therefore,
Im{(R′

+)d(ω)/(G+)d(ω)} in (35), and thus the explicit ex-
pressions of Kd, for both cases would differ from each other
in parameters (w0, Ω, γ). By using equation (39) we can
obtain

see equations 63 and 64 above

where w1 =
√

w2
0 − (γ/2)2 and w̄1 = −iw1.

From equations (24), (63), and (64), we have an exact
expression

(Es)d(0) =
�

2π
{A(w0, Ω, γ) + B(w0, Ω, γ)} , (65)
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A(w0, Ω, γ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(w2
0 + Ω2) (2Ω w2

1 + w2
0 γ) − Ω2 γ3/2

w1 (Ω + γ) (w2
0 − Ω γ + Ω2)

arccos(γ/2w0)

(w2
0 + Ω2) (Ω γ2/4 − w3

0 − w2
0 γ/2) − Ω γ2/2 · (w2

0 − Ω γ/2)

w̄1 (Ω + γ) (w2
0 − Ω γ + Ω2)

ln

(
γ/2 − w̄1

γ/2 + w̄1

) (66)

where

see equation 66 above

for w0 > γ/2 and w0 ≤ γ/2, respectively, and

B(w0, Ω, γ) =
Ω γ(Ω2 + Ωγ − w2

0)
(Ω + γ)(w2

0 − Ωγ + Ω2)
ln(Ω/w0).

(67)
Similarly, the free energy Fd(0) in equation (28) can be
exactly evaluated as

Fd(0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

2π

{
(Ω + γ) ln

(
Ω + γ

Ω

)
+ γ ln

(
Ω

w0

)

+2w1 arccos
(

γ
2w0

)}
for w0 > γ/2

�

2π

{
(Ω + γ) ln

(
Ω + γ

Ω

)
+ γ ln

(
Ω

w0

)

+w̄1 ln
(

γ/2−w̄1
γ/2+ w̄1

)}
for w0 ≤ γ/2.

(68)
Clearly, (Es)d(0) and Fd(0) for the underdamped case are
identical to equations (10) and (14) in [11], respectively.
These expressions can also be applied for the overdamped
case (w1 �∈ R) with the aid of the complex-valued ex-
pression, arccos(y) = π

2 + i ln(i y +
√

1 − y2) and actually
equivalent to those for the overdamped case derived here.
Then, we can obtain Es(0) < F (0) for both cases (see
Fig. 2 in [11]).

In the limit Ω → ∞ (equivalently, ωd → ∞), we get
from equations (65–68)

Kd ≈ � Ω

2π
ln
(

Ω + γ

Ω

)
≈ � γ

2π

(
1 − γ

2Ω

)
+O

(
1

Ω2

)
(69)

which reduces to

γ

πw0
Eg =

� γ

2π

1√
1 + γ/Ω

≈ � γ

2π

(
1 − γ

2Ω

)
+ O

(
1

Ω2

)
(70)

(cf. Eq. (15) in [11]). Lastly, we explicitly give an explicit
expression for Kd in original parameters (ω0, ωd, γo),

Kd =
� γo

2π

×
∫ ∞

0

dλ
2λ2

d λ5 − (2 λ2
0 + λd)λ2

dλ
3

{(λ2 + λ2
d)(λ2 − λ2

0) − λd λ2}2 + (λ2
dλ)2

, (71)

where a dimensionless parameter λ = ω/γo with λ0 =
ω0/γo and λd = ωd/γo. Here, we see that the non-zero
value of Kd for λd → ∞ arises from the competition be-
tween two terms of the numerator of the integrand for
large λ. Equation (71) is also used in Table 2 for compar-
ison with Kd,1 in equation (49).

Appendix C: Details for equations (41)
and (47)

In derivation of equation (41), we used the relation-
ship [24] E1(−y ± i 0+) = −Ei(y) ∓ i π, where the ex-
ponential integrals E1(y) =

∫∞
1 dz e−y z/z and Ei(y) =

P
∫ y

−∞ dzez/z. Also, for equation (47), we employed,
first [25],
∫ ∞

0

dy
cos(a y)
y + b

= − sin(a b)si(a b) − cos(a b)Ci(a b), (72)

where the sine integral si(y) = − ∫∞
y

dz sin(z)
z = −π

2 +Si(y)

with Si(y) =
∫ y

0
dz sin(z)

z , and the cosine integral Ci(y) =
− ∫∞y dz cos(z)

z = ce + ln y +
∫ y

0 dz cos(z)−1
z with the Euler

constant ce = 0.5772156649...; secondly, we used the rela-
tions Si(iy) = i

2{Ei(y) + E1(y)} and Ci(iy) = 1
2{Ei(y) −

E1(y)} + π
2 i [24].
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